Huckebein-mediated autoregulation of Glide/Gcm triggers glia specification.
نویسندگان
چکیده
Cell specification in the nervous system requires patterning genes dictating spatio-temporal coordinates as well as fate determinants. In the case of neurons, which are controlled by the family of proneural transcription factors, binding specificity and patterned expression trigger both differentiation and specification. In contrast, a single gene, glide cell deficient/glial cell missing (glide/gcm), is sufficient for all fly lateral glial differentiation. How can different types of cells develop in the presence of a single fate determinant, that is, how do differentiation and specification pathways integrate and produce distinct glial populations is not known. By following an identified lineage, we here show that glia specification is triggered by high glide/gcm expression levels, mediated by cell-specific protein-protein interactions. Huckebein (Hkb), a lineage-specific factor, provides a molecular link between glide/gcm and positional cues. Importantly, Hkb does not activate transcription; rather, it physically interacts with Glide/Gcm thereby triggering its autoregulation. These data emphasize the importance of fate determinant cell-specific quantitative regulation in the establishment of cell diversity.
منابع مشابه
Polycomb Controls Gliogenesis by Regulating the Transient Expression of the Gcm/Glide Fate Determinant
The Gcm/Glide transcription factor is transiently expressed and required in the Drosophila nervous system. Threshold Gcm/Glide levels control the glial versus neuronal fate choice, and its perdurance triggers excessive gliogenesis, showing that its tight and dynamic regulation ensures the proper balance between neurons and glia. Here, we present a genetic screen for potential gcm/glide interact...
متن کاملTwo-speed cell specification
10.1083/jcb.1723r r3jcb17 23rr3A lla Katsnelson< cor> [email protected] m E. col i squeezed into action E scherichia coli chemoreceptors double as osmotic sensors by mechanically compressing in response to increased osmolarity, say Ady Vaknin and Howard Berg (Harvard University, Cambridge, MA). E. coli is always on the look-out for a better environment....
متن کاملFunctional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilita...
متن کاملThe Glide/Gcm fate determinant controls initiation of collective cell migration by regulating Frazzled
Collective migration is a complex process that contributes to build precise tissue and organ architecture. Several molecules implicated in cell interactions also control collective migration, but their precise role and the finely tuned expression that orchestrates this complex developmental process are poorly understood. Here, we show that the timely and threshold expression of the Netrin recep...
متن کاملA novel role of the glial fate determinant glial cells missing in hematopoiesis.
Glial cell deficient/Glial cells missing (Glide/Gcm) transcription factor is expressed in all glial precursors of the Drosophila embryo. Gcm is necessary and sufficient to induce glial differentiation but also plays a role in other cell types, by interacting with specific factors. To find potential partners of Gcm which trigger these other pathways, we performed a yeast two-hybrid screen and id...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 25 1 شماره
صفحات -
تاریخ انتشار 2006